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Overview

Introduction

I graphical models + belief propagation

I specialization to Gaussian model

Analysis of Gaussian BP

I walk-sum analysis for means, variances, covariances1

I orbit-product analysis/corrections for determinant2

Current Work on Generalized Belief Propagation (GBP) [Yedidia et
al]

I uses larger “regions” to capture more walks/orbits of the
graph (better approximation)

I However, it can also lead to over-counting of walks/orbits
(bad approximation/unstable algorithm)!

1Earlier joint work with Malioutov & Willsky (NIPS, JMLR ’06).
2Johnson, Chernyak & Chertkov (ICML ’09).



Graphical Models

A graphical model is a multivariate probability distribution that is
expressed in terms of interactions among subsets of variables (e.g.
pairwise interactions on the edges of a graph G ).

P(x) =
1

Z

∏
i∈V

ψi (xi )
∏
{i ,j}∈G

ψij(xi , xj)

Markov property:

BA S

P(xA, xB |xS) = P(xA|xS)P(xB |xS)

Given the potential functions ψ, the goal of inference is to compute
marginals P(xi ) =

∑
xV\i

P(x) or the normalization constant Z ,

which is generally difficult in large, complex graphical models.



Gaussian Graphical Model

Information form of Gaussian density.

P(x) ∝ exp
{
−1

2xT Jx + hT x
}

Gaussian graphical model: sparse J matrix

Jij 6= 0 if and only if {i , j} ∈ G

Potentials:
ψi (xi ) = e−

1
2Jiix

2
i +hixi

ψij(xi , xj) = e−Jijxixj

Inference corresponds to calculation of mean vector µ = J−1h,
covariance matrix K = J−1 or determinant Z = det J−1. Marginals
P(xi ) specified by means µi and variances Kii .



Belief Propagation

Belief Propagation iteratively updates a set of messages µi→j(xj)
defined on directed edges of the graph G using the rule:

µi→j(xj) ∝
∑
xi

ψi (xi )
∏

k∈N(i)\j

µk→i (xi )ψ(xi , xj)

Iterate message updates until converges to a fixed point.

Marginal Estimates: combine messages at a node

P(xi ) =
1

Zi
ψi (xi )

∏
k∈N(i)

µk→i (xi )︸ ︷︷ ︸
ψ̃i (xi )



Belief Propagation II

Pairwise Estimates (on edges of graph):

P(xi , xj) =
1

Zij
ψ̃i (xi )ψ̃j(xj)

ψ(xi , xj)

µi→j(xj)µj→i (xi )︸ ︷︷ ︸
ψ̃ij (xi ,xj )

Estimate of Normalization Constant:

Zbp =
∏
i∈V

Zi

∏
{i ,j}∈G

Zij

ZiZj

BP fixed point is saddle point of RHS with respect to
messages/reparameterizations.

In trees, BP converges in finite number of steps and is exact
(equivalent to variable elimination).



Gaussian Belief Propagation (GaBP)

Messages µi→j(xj) ∝ exp{1
2αi→jx

2
j + βi→jxj}.

BP fixed-point equations reduce to:

αi→j = J2
ij (Jii − αi\j)

−1

βi→j = −Jij(Jii − αi\j)
−1(hi + βi\j)

where αi\j =
∑

k∈N(i)\j αk→i and βi\j =
∑

k∈N(i)\j αk→i .

Marginals specified by:

Kbp
i = (Jii −

∑
k∈N(i)

αk→i )
−1

µbp
i = Kbp

i (hi +
∑

k∈N(i)

βk→i )



Gaussian BP Determinant Estimate

Estimates of pairwise covariance on edges:

Kbp
(ij) =

(
Jii − αi\j Jij

Jij Jjj − αj\i

)−1

Estimate of Z , det K = det J−1:

Zbp =
∏
i∈V

Zi

∏
{i ,j}∈G

Zij

ZiZj

where Zi = Kbp
i and Zij = det Kbp

(ij).

Exact in tree models (equivalent to Gaussian elimination),
approximate in loopy models.



The BP Computation Tree

BP marginal estimates are equivalent to the exact marginal in a
tree-structured model [Weiss & Freeman].
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Walk-Summable Gaussian Models

Let J = I − R. If ρ(R) < 1 then (I − R)−1 =
∑∞

L=0 RL.

Walk-Sum interpretation of inference:

Kij =
∞∑

L=0

∑
w :i

L→j

Rw ?
=
∑

w :i→j

Rw

µi =
∑

j

hj

∞∑
L=0

∑
w :j

L→i

Rw ?
=
∑

w :∗→i

h∗R
w

Walk-Summable if
∑

w :i→j |Rw | converges for all i , j . Absolute
convergence implies convergence of walk-sums (to same value) for
arbitrary orderings and partitions of the set of walks. Equivalent to
ρ(|R|) < 1.



Walk-Sum Interpretation of GaBP

Combine interpretation of BP as exact inference on computation
tree with walk-sum interpretation of Gaussian inference in trees:

I messages represent walk-sums in subtrees of computation tree

I Gauss BP converges in walk-summable models

I complete walk-sum for the means

I incomplete walk-sum for the variances



Complete Walk-Sum for Means

Every walk in G ending at a node i maps to a walk of the
computation tree Ti (ending at root node of Ti )...
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Gaussian BP converges to the correct means in WS models.



Incomplete Walk-Sum for Variances

Only those totally backtracking walks of G can be embedded as
closed walks in the computation tree...
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(underestimate in non-negative model).



Zeta Function and Orbit-Product

What about the determinant?

Definition of Orbits:

I A walk is closed if it begins and ends at same vertex.

I It is primitive if does not repeat a shorter walk.

I Two primitive walks are equivalent if one is a cyclic shift of
the other.

I Define orbits ` ∈ L of G to be equivalence classes of closed,
primitive walks.

Theorem. Let Z , det(I − R)−1. If ρ(|R|) < 1 then

Z =
∏
`

(1− R`)−1 ,
∏
`

Z`.

A kind of zeta function in graph theory.



Zbp as Totally-Backtracking Orbit-Product

Definition of Totally-Backtracking Orbits:

I Orbit is reducible if it contains backtracking steps ...(ij)(ji)...,
else it is irreducible (or backtrackless).

I Every orbit ` has a unique irreducible core γ = Γ(`) obtained
by iteratively deleting pairs of backtracking steps until no more
remain. Let Lγ denote the set of all orbits that reduce to γ.

I Orbit is totally backtracking (or trivial) if it reduces to the
empty orbit Γ(`) = ∅, else it is non-trivial.

Theorem. If ρ(|R|) < 1 then Zbp (defined earlier) is equal to the
totally-backtracking orbit-product:

Zbp =
∏
`∈L∅

Z`



Orbit-Product Correction and Error Bound

Orbit-product correction to Zbp:

Z = Zbp
∏
6̀∈L∅

Z`

Error Bound: missing orbits must all involve cycles of the graph...

1

n

∣∣∣∣log
Z

Zbp

∣∣∣∣ ≤ ρg

g(1− ρ)

where ρ , ρ(|R|) < 1 and g is girth of the graph (length of
shortest cycle).



Reduction to Backtrackless Orbit-Product Correction

We may reduce the orbit-product correction to one over just
backtrackless orbits γ

Z = Zbp

∏
`

Z` = Zbp

∏
γ

 ∏
`∈L(γ)

Z`


︸ ︷︷ ︸

Z ′γ

with modified orbit-factors Z ′γ based on GaBP

Z ′γ = (1−
∏

(ij)∈γ

r ′ij)
−1 where r ′ij , (1− αi\j)

−1rij

The factor (1− αi\j)
−1 serves to reconstruct totally-backtracking

walks at each point i along the backtrackless orbit γ.



Backtrackless Determinant Correction

Define backtrackless graph G ′ of G as follows: nodes of G ′

correspond to directed edges of G , edges (ij)→ (jk) for k 6= i .
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based on GaBP. Then,

Z = Zbp det(I − R ′)−1



Region-Based Estimates/Corrections
Select a set of regions R ⊂ 2V that is closed under intersections
and cover all vertices and edges of G.

Define regions counts (nA ∈ Z,A ∈ R) by inclusion-exclusion rule:

nA = 1−
∑

B∈R|A(B

nB

To capture all orbits covered by any region (without over-counting)
we calculate the estimate:

ZR ,
∏
B

ZnB
B ,

∏
B

(det(I − RB)−1)nB

Error Bounds. Select regions to cover all orbits up to length L.
Then,

1

n

∣∣∣∣log
ZB
Z

∣∣∣∣ ≤ ρL

L(1− ρ)



Example: 2-D Grids

Choice of regions for grids: overlapping L× L, L
2 × L, L× L

2 , L
2 ×

L
2

(shifted by L
2 ).

For example, in 6× 6 grid with block size L = 4:

n = +1 n = −1 n = +1



256× 256 Periodic Grid, uniform edge weights r ∈ [0, .25].
Test with L = 2, 4, 8, 16, 32.
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Generalized Belief Propagation
Select a set of regions R ⊂ 2V that is closed under intersections
and cover all vertices and edges of G.

Define regions counts (nA ∈ Z,A ∈ R) by inclusion-exclusion rule:

nA = 1−
∑

B∈R|A(B

nB

Then, GBP solves for saddle point of

ZR(ψ) ,
∏
A∈R

Z (ψR)nR

over reparameterizations {ψA,A ∈ R} of the form

P(x) =
1

Z

∏
A∈R

ψR(xR)nR

Denote saddle-point by Zgbp = ZR(ψgbp).



Example: 2-D Grid Revisited
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GBP Toy Example

Look at graph G = K4 and consider different choices of regions...
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GBP “3∆” Regions:
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Computational Experiment with equal edge weights r = .32 (the
model becomes singular/indefinite for r ≥ 1

3).

Z = 10.9

Zbp = 2.5

Zgbp(3∆) = 9.9

Zgbp(4∆) = 54.4!!!

GBP with 3∆ regions is big improvement of BP (GBP captures
more orbits).

What went wrong with the 4∆ method?



Orbit-Product Interpretation of GBP

Answer: sometimes GBP can overcount orbits of the graph.

I Let T (R) be the set of hypertrees T one may construct from
regions R.

I Orbit ` spans T if we can embed ` in T but cannot embed it
in any sub-hypertree of T .

I Let g` , #{T ∈ T (R)|` spans T}.

Orbit-Product Interpretation of GBP:

Zgbp =
∏
`

Z g`
`

Remark. GBP may also include multiples of an orbit as
independent orbits (these are not counted by Z ).

We say GBP is consistent if g` ≤ 1 for all (primitive) orbits and
g` = 0 for multiples of orbits (no overcounting).



Examples of Over-Counting

Orbit ` = [(12)(23)(34)(41)]:
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Conclusion and Future Work

Graphical view of inference in walk-summable Gaussian graphical
models that is very intuitive for understanding iterative inference
algorithms and approximation methods.

Future Work:

I many open questions on GBP.

I multiscale method to approximate longer orbits from
coarse-grained model.

I beyond walk-summable?
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